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Penetrability of a one-dimensional Coulomb potential
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Abstract. A few years ago the author and his collaborators introduced the concept of a Dirac
oscillator and extended it to a quatk—antiquark (qq) system for a discussion of the mass spectrum
of mesons. The problem was reduced to a radial equation of a familiar type but with a singularity
(r~a)"! = 7! at some given value of the radius. The character of the mass specttum was
determined by whether the potential x~! with ~co € x < ¢o is penetrable at the origin or not.
This leads to a discussion of penetrability of a one-dimensional Coulomb barrier which is the
object of this ‘paper. The solution of the caorresponding wave equation for x < Gand x > 0
is well known, but the trick is to join them at x = O where they are bounded but have an oo
derivative. We obtain explicitly the transmission and reflection amplitudes. As the barier is
then peneirable, our qd system does not have a bound spectrum, but a continuous ore which, in
some cases, may have resonances whose widths are small compared with their separation.

1. Introduction

In 1989, in this journal [1], the concept of a one-body Dirac oscillator was introduced, and it
gave rise to several papers [2]. The author and his collaborators were principally interested
in generalizing the concept to many bodies, including the three quark case [3] applied to
baryons and the quark-antiquark (qQ) system of interest in the mass spectra of mesons [4].

The latter problem, in the centre-of-mass frame, can be reduced to a radial equation [35]
of the familiar Schrédinger type with potential of the form

V =-b*/(r* - a%) (1.1)

where b?, a® are some real positive functions of the energy and total angular momentum.
It was then important to know the energy spectrum of this radial equation which depends
on the natore of the singularity at r = 4. The potential (1.1) which is +ocoatr =a -0,
together with the +oo value of the centrifugal force at » = 0, implies that we have a discrete
spectrum with the wavefunction restricted to the interval 0 < r £ 4. If the potential (1.1} is
penetrable at r = g then the spectrum is clearly continuous and the wavefunction appears
in the full interval 0 < r < oo though, as in other barrier problems, there may be resonant
states corresponding to outgoing waves at » — co. We will show that the latter conclusion
is the one that holds.
As the potential (1.1) in the vicinity of r = a can be written as

V = —b%/(r +a)(r — a) ~ —b*{2ax (1.2)
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Figure 1. The potential of the one-dimensional
Coulomb problem of (2.1).

where x = (r — a), the important part of V is a one-dimensional Coulomb problem which
leads us to a discussion of the equation

_____ ¢=Ep (1.3)

where —c¢ € x £ oc,m is the mass of the particle, Ze the positive charge of the one-
dimensional Coulomb potential and —e is that of the incoming particle.

We know full well the solutions [6] of equation (1.3) when x < 0 and x > 0 and the
point is to connect them at the origin where they are bounded but their derivative is co. We
shall indicate in the following section how this can be achieved, and obtain the transmission
and reflection coefficients associated with the barrier.

We wish to stress that the one-dimensional Coulomb problem has been discussed very
extensively [7], but always using |x|~! as the potential and not x~! and, in addition,
restricting the analysis to bound states and not scattering states as in this problem. Thus, as
far as we know, the problem of solving equation (1.3) has not been tackled in the literature,
despite its seemingly elementary nature,

We shall show in this paper that the one-dimensional Coulomb barrier is penetrable,
thus affecting the nature of the spectrum of the g system thh Dirac osciliator interaction
[8], as was indicated above.

2. Reduction of the problem to the Whittaker equation

Writing the energy in terms of the wave number, i.e. £ = (#%2/2m), equation (1.3)
becomes

32
f + -—¢ + k¢ =0 @1
ax
where
D =i (me*z)~} 2.2

and the potential is drawn in figure 1.
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With the help of the definitions
z = 2ik|x| A= (kD)1 (2.3, b)

we see that (2.1) reduces to the standard ‘Whittaker form of the confluent hypergeometric

equation [9],
@o5 (1, A\ .
__(Zj:;)qj () =0 24)

where the + sign applies when x > 0 and the minus sign when x < 0.

As the u appearing in equation (9.220.1) of [9] takes the value u = 1/2, we see [9] that
¢, ¢T, can be expressed, respectwely, as linear combinations of Wi 12(2), Woi 12(—2)
or W_i,12(2), Wi, 1/2(—2).

From now on we suppress the fixed index 1/2 in Wx; 12(2) and thus refer to the Iinearly
independent solutions of (2.4) as combination of

Wea(2), Wi (—2). (2.5a)
As the asymptotic form of W, (2) for [z] - oo, given by (9.227.1) of [9], is
Wi(2) = exp(—z/2)z* - (2.5b)
we can take as solution of our problém for a wave incoining from the left as
&, (2) = W, (z) — ROQIW_,(—2) forx <0 (2.6a)
© ¢t z) = TAWi(=2) forx =0 (2.6h)
where R(A), T (L) are, respectively, the reflection and transmission coefficient for this wave.
The normal restriction that we have to put on solution (2.6) is that ¢f(z) and its
derivative with respect to z should be continuous at z = 0, i.e. x = 0. This is straightforward
for ¢;°(0) but not for the derivative as [dp(z)/dz] diverges at z = 0.

Thus we proceed to discuss some characteristics of the behaviour of W, (z) that allows
us to avoid this problem.

3. Behaviour of the function W (z) and its derivative near z =0
From equation (9.237.1) of [9] we see that W, (z) admits the series expansion
Wi(—2) = exp(~z/DIT (- - 1]
X {F(—A)—i Rer1-4) Y (k+ D+ 9 (k+2) - (k41 —l)—ln z]}

Lt KNk + 1)
G.1

where

¥ () = [dnI'(u)/du]. - G2
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From this it is immediately clear that
Wa(0) = [Tt — 1]~ W_i(0) = [T (1 + )] (3.3a, b)

as z Inz also tends to zero when z — 0.
Taking the derivative of W,(z) it can be immediately seen that [dW).(z)/dz] diverges as
Inz when z — 0, vet using the results of [9] one can show straightforwardly that [10-13]

lim W@ oiea InzW;,(z)] = —2ikf () (3.4a)

lim [AWoa(=2) _ 2k sz_,,(—z)] = —2ikg(h) (3.4b)

0] dx -

lim 9‘1;;_—2) — 2ikAIn zWL(—z)] = 2ikg(—1). (3.5¢)
where

ir{a- l)]“’{% = M2C+y¥(1 -} = f(A) (3.5a)

= F(=2) ~im AL (1 + W] = g(h) (3.5b)

and C is the BEuler constant C = 0.577215.
With these results we now pass to a discussion of the boundary conditions at the origin.

4. Boundary conditions at z =0 .

The continuity of the wavefunctions at x = 0 leads to the equation

$57 (@) = ¢+ (0) @.1)
and using (2.6) and (3.3} we obtain

(P =] = RAT A+ =TT -] @2

For the derivative we have the divergence problem discussed in the previous section
but, because of (4.1), we can write instead of the continuity of the derivative the equation

[dqb;(z) g (2)
dx dx

—2ikAIn zqﬁ;(z)] = [

x=0

— 2ikAInze (z)] 4.3)

x=0

where, from the discussion in the previous section, the square brackets are perfectly definite
at x = 0. We thus obtain from (2.6) and (3.4} the relations

— A +gMR = g(—MT. (4.4)
From (4.2), (4.4) we then have that
L pl(1—=4)
r= T(1+2) (4.5a)
F(A)+g(=A)

T e W+ (AT — DA+ 01! (4.5b)
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where f(A) and g(A) are given by (3.5). Substituting in (4.5b) we finally obtain

G AT(L + A)
1=+ A —4) — g1+ M)}

We can further simplify expression (4.6) by noting that from (8.365.8) and (8.365.1) in
[9] we have

R(a) = T (4.6)

P ~2) =y () +atan™ w2 Y(l+2) =y@)+2~" (4.7a, b)
so finally we get '

_ T[l - (i/4D)] sinh(z/kD)
{1+ (i/kD)} cosh(w/ kD)

4.8)

where we have replaced A by (ikD)~! and used hyperbolic instead of trigonometric
functions.
In turn from (4.5a) we have that

T = exp(—w/kD)/cosh(m/kD). (4.9)

We note though that before interpreting |R|%, [T|* as the probabilities of reflection and
transmission for the one-dimensional Coulomb potential, we must take into account the fact
that the absolute values of the functions Wy, (£z) when |z| — oo are not unity. In fact
from (2.50), and writing z = 2ik|x|, we see that when |z| = 2k[x| —» co we obtain [9]

Wi (z) — exp{-—-ilk|x] + kDYt In(2k|x]} exp( /2k D) ‘ {4.10a)
W_x(—2) — explilkix| + (kD)™ In(2k|x])} exp(mw/2k D) (4.106)
W, (—z) — explilk|x]| — (&D)~! n(2k|x))} exp(37 /2k D) (4.10c)

and thus we have for |z| — oo the following ratios for the absolute values
{Woi(=2)/Wo(2)l =1 |Wi(~2)/ Wi(2)| = exp(m/k D). (4.11a, b)

If we normalize the incoming wave W, (z) in (2.6a) to unit intensity, fhen from (4.11a)
the reflected intensity is given by |R}?, while from (4.11b) the transmitted one is

exp(2m/kD)T* = [cosh(z/ kD)) 2. (4.12)
From (4.8) and (4.9) we then immediately check that
(R + exp(2n/ kD) T* = 1 . (4.13)

as required by the conservation of probability.

Note that when & — oo, (/kD) — 0 and so the probability (4.12} for transmission
becomes almost 1. On the other hand if £ — 0, this probability tends to 4exp(—2x/kD)
and thus diminishes exponentially and, in fact, vanishes at k¥ = 0. )

The problem also has bound states characterized by the fact that there is no reflection
i.e. for ks for which

Ri(ikD)"'] = 0. (4.14)
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From (4.8) it is clear that this implies

*Dy ! =in n=0,1,2,... (4.15)
s0 the corresponding energies are real and negative, l.e.
472
me*Z- 1
Ep=— O (4.16)
Note that the bound states, besides the standard ones of the hydrogen atom for
n=123,...,, include Ey = —ecc, which is mentioned as a possibility for the one-

dimensional Coulomb problem by several of the authors of [7].

Finally our main conclusion is that the one-dimensional Coulomb potential x~! is
penetrable, despite its divergence at x = 0.
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