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Penetrability of a one-dimensional Coulomb potential 
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Abstract. A few years ago the. author and his wllaborators introduced the ooncept of a Dirac 
oscillator and extended it to a quarkantiquark (qq) syslem for a discussion of the mass spectrum 
of mesons. The problem was reduced to aradial equation o f a  familiar l y p  but with asingularity 
(r - n)-l 5 x-I at some given value of the radius. The character of the mass s p e c ”  was 
determined by whether the potential x-’ with -m < x < m is penebble at the onpin 01 not 
This leads to a discussion of penetrability of a owdimensional Coulomb barrier which is the 
object of this’paper. The solution of the corresponding wave equation for x c 0 and x > 0 
is well known, but the trick is to join them at x = 0 where they ire bounded but have an m 
derivative. We obtain explicitly the hansmission and reflection amplitudes. As the. barrier is 
then penetrable. our q4 system does not have a bound spec!”, but a continuous one which in 
some cases, may have resonances whose widths are small compared with thek separation. 

1. Introduction 

In 1989, in this joumal [I], the concept of a one-body Dirac oscillator was introduced, and it 
gave rise to several papers 121. The author and his collaborators were principally interested 
in generalizing the concept to many bodies, including the three quark case [3] applied to 
baryons and the quark-antiquark (qq) system of interest in .the mass spectra of mesons [4]. 

The latter problem, in the centre-of-mass frame, can be reduced to a radial equation [5] 
of the familiar Schrodinger type with potential of the form 

V = -b2/(r2 - a’) (1.1) 

where b2, a2 are some real positive functions of the energy and total angular momentum. 
It was then important to know the energy spectrum of this radial equation which depends 
on the nature of the singularity at r = a. The potential (1.1) which is fca at r = a - 0, 
together with the fa value of the centrifugal force at r = 0, implies that we have a discrete 
specbum with the wavefunction restricted to the interval 0 < r < a. If the potential (1.1) is 
penetrable at r = a then the spectrum is clearly continuous and the wavefunction appears 
in the full interval 0 < r < 00 though, as in other bamer problems, there may be resonant 
states corresponding to outgoing waves at r + a. We will show that the latter conclusion 
is the one that holds. 

As the potential (1.1) in the vicinity of r = U  can be written as 

(1.2) 2 V = -b / ( r  + a)(r - a)  2: -b2 f2ax 
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where x = (r - a ) ,  ti impom . 
leads us to a discussion of the equ: 

F g r e  1. The potential of the one-dimensional 
Coulomb problem of (21). 

r t  of V is a onedimensional Coulomb problem which 
on 

where -00 < x < 00, m is the mass of the particle, Ze the positive charge of the one- 
dimensional Coulomb potential and --e is that of the incoming particle. 

We know full well the solutions 161 of equation (1.3) when x < 0 and x > 0 and the 
point is to connect them at the origin where they are bounded but their derivative is 00. We 
shall indicate in the following section how this can be achieved, and obtain the transmission 
and reflection coefficients associated with the barrier. 

We wish to stress that the onedimensional Coulomb problem has been discussed very 
extensively 171, but always using I X I - ~  as the potential and not x-' and, in addition, 
restricting the analysis to bound states and not scattering states as in this problem. Thus, as 
far as we know, the problem of solving equation (1.3) has not been tackled in the literature, 
despite its seemingly elementary nature. 

We shall show in this paper that the one-dimensional Coulomb barrier is penetrable, 
thus affecting the nature of the spechum of the qci system with D i m  oscillator interaction 
181, as was indicated above, 

2. Reduction of the problem to the Whittaker equation 

Writing the energy in terms of the wave number, i.e. E = (h2k2/2m), equation (1.3) 
becomes 

a24 2 
ax* DX 
- + -@+ kz@ = 0 

where 

and the potential is drawn in figure 1. 
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With the help of the definitions 

z = 2iklnl A = (ikD)-’ (2.3~. b) 

we see that (2.1) reduces to the standard Whittaker form of the confluent hypergeometric 
equation [9], 

(2.4) 

where the + sign applies when x > 0 and the minus sign when x c 0. 
As the f i  appearing in equation (9.220.1) of [9] takes the value p = 1/2, we see 191 that 

@-, @+, can be expressed, respectively, as linear combinatiom of WA,&), W-A,I/Z(-Z) 
or w-A,l/Z(z)~ WA,I/Z(-Z). 

From now on we suppress the fixed index 1/2 in Ws,&)  and thus rekr to the linearly 
independent solutions of (2.4) as combination of 

WTA(z), wU(-z). (2.50) 

As the asymptotic form of W h o )  for IzI + W. given by (9.227.1) of [9], is 

Wh(z) Y exp(-zj2)zA W b )  

we can take as solution of our problem for a wave incoming from the left as 

(2.6~) 

(2.6b) 

where R(A), T(A) are, respectively, the reflection and transmission coefficient for this wave. 
The normal restriction that we have to put on solution (2.6) is that &(z) and its 

derivative with respect to z should be continuous at z = 0, i.e. x = 0. This is stmightforward 
for @:,“CO) but not for the derivative as [d&(z)/dz] diverges at z = 0. 

Thus we proceed to discuss some characteristics of the behaviour of WA(Z) that allows 
us to avoid this problem. 

3. Behaviour of the function Wx(z) and its derivative near z = 0 

From equation (9.237.1) of [9] we see that WA(Z) admits the series expansion 

w,(-z) = exp(-z/2)[r(-~)r(l - A)]-’ 

where 
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From this it is immediately clear that 

WA(0) = [r(l -A)]-' w-~(o) = [r(i +A)]-' (3.3a, 6) 

as z In z also tends to zero when z + 0. 
Taking the derivative of WA(z) it can be immediately seen that [dw~(z)/&] diverges as 

lnz when z -+ 0, yet using the results of [9] one can show straightfomardly that [10-131 

(3.44 

(3.4b) 

(3.54 

where 

[r(i  - h)i-'{$ - ~ [ 2 c  + $(i -A)]} = f ( h )  

- f ( -h)  - inh[r(l +A)]-' = g(A) 

( 3 . 5 ~ )  

(3.56) 

and C is the Euler constant C = 0.577215. 
With these results we now pass to a discussion of the boundary conditions at the origin. 

4. Boundary conditions at x = 0 

The continuity of the wavefunctions at x = 0 leads to the equation 

KW = @::CO) (4.1) 

[r(l -A)]-' - R(A)[T(l +A)]-' = T(A)[r(l -A)]-'. (4.2) 

and using (2.6) and (3.3) we obtain 

For the derivative we have the divergence problem discussed in the previous section 
but, because of (4.1). we can write instead of the continuity of the derivative the equation 

where, from the discussion in the previous section, the square brackets are perfectly definite 
at x = 0. We thus obtain from (2.6) and (3.4) the relations 

- f(h) + g(A)R = g(-A)T. (4.4) 

From (4.2), (4.4) we then have that 

(4 .5~)  

(4.56) 
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where f(A) and g(A) are given by (3.5). Substituting in (4.56) we finally obtain 

(inh)r(l +h) 
R(A) = r(1 - A)( 1 + A[@(l - A) - @(l +A)]}' 

(4.6) 

We can further simplify expression (4.6) by noting that from (8.365.8) and (8.365.1) in 
[9] we have 

+(l-h)=$(A)+ntan- 'nh $ ( l + A ) = @ ( A ) + A - '  (4.7a.b) 

so finally we get 

r [ l  - (i/kD)] sinh(n/kD) 
r[l+ (i/kD)l cosh(n/kD) 

R =  ~(4.8) 

where we have replaced A by (ikD)-' and used hyperbolic instead of trigonometric 
functions. 

In turn from (4.5~) we have that 

T = exp(-a/kD)/cosh(n/kD). (4.9) 

We note though that before interpreting /RI2, lTIZ as the probabilities of reflection and 
transmission for the one-dimensional Coulomb potential, we must take into account the fact 
that the absolute values of the functions WU(+Z) when IzI + CO are not unity. In fact 
from (2.5b), and writing z = Ziklxl, we see that when Iz( = 2klxl + 00 we obtain [91 

(4. IOU)  W,(z)  -+ exp{-i[klxl+ (kD)-' In(Zklxl)}exp(n/2kD) 

WA(-Z) + exp{i[klxl- (kD)-' In(2klxI))exp(3n/ZkD) 

W-k(-Z) -+ exp{i[klxl+ (kD)-' In(Zklxl)1exp(n/ZkD) (4.106) 

(4.10c) 

and thus we have for Izl -+ 00 the following ratios for the absolute values 

IW-*(-z)/W,(z)l = 1 lW,(-z)/W,(z)l =exp(n/kD). (4.110, b) 

If we normalize the incoming wave W,(z) in (2.60) to unitintensity, hen from (4.1 la) 
the reflected intensity is given by (RI*, while from (4.11b) the transmitted one is 

e~p(2n/kD)IT1~ = [co~h(n/kD)l-~. (4.12) 

From (4.8) and (4.9) we then immediately check that 

/RI2 +exp(2n/kD)lT12 = 1 (4.13) 

as required by the conservation of probability. 
Note that when k -+ CO, ( n / k D )  -+ 0 and so the probability (4.12) for transmission 

becomes almost 1. On the other hand if k + 0, this probability tends to 4exp(-21r/kD) 
and thus diminishes exponentially and, in fact, vanishes at k = 0. 

The problem also has bound states characpized by the fact that there is no reflection 
i.e. forks for which 

R[(ikD)-'] = 0. (4.14) 
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From (4.8) it is clear that this implies 

(kD)-' = in n = 0, 1,2, .. . 
so the corresponding energies are real and negative, i.e. 

(4.15) 

(4.16) 

Note that the bound states, besides the standard ones of the hydrogen atom for 
n = 1,2,3, . . . , include Eo = --CO, which is mentioned as a possibility for the one- 
dimensional Coulomb problem by several of the authors of [7]. 

Finally our main conclusion is that the onedimensional Coulomb potential x-' is 
penetrable, despite its divergence at x = 0. 
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